THE SOLUTION OF GRAHAM'S GREATEST COMMON DIVISOR PROBLEM

M. SZEGEDY

Received 2 May 1985

The following conjecture of R. L. Graham is verified: If $n \ge n_0$, where n_0 is an explicitly computable constant, then for any n distinct positive integers $a_1, a_2, ..., a_n$ we have $\max_{i,j} a_i/(a_i, a_j) \ge n$, and equality holds only in two trivial cases. Here (a_i, a_j) stands for the greatest enmmon divisor of a_i and a_j .

R. L. Graham asked the following question in [2]: Is it true that if $a_1, a_2, ..., a_n$ are distinct positive integers, then $\max_{i,j} \frac{a_i}{(a_i, a_j)} \ge n$. (Parentheses will denote g. c. d. throughout the paper.)

For a relatively complete history of the problem see [1], pages 78—79.

If $a_1, a_2, ..., a_n$ were a counterexample for the conjecture, then each a_i/a_j could be written in the form s/t where $s=a_i/(a_i, a_j)$, $t=a_j/(a_i, a_j)$, and s, t < n. So in fact we are interested only in the ratios of the a_i , a_j pairs. This idea gives us a second version of Graham's conjecture:

If we have n distinct positive rational numbers $r_1, r_2, ..., r_n$, we can choose two of them r_i and r_j so that $r_i/r_j = s/t$ where (s, t) = 1 and $s \ge n$.

From this version immediately follows the fact, that each prime greater than n-1 has to be in the same power in each a_i in a counterexample. We can extend this statement to the primes greater than n/2:

Lemma. Let $a_1, a_2, ..., a_n$ be distinct positive integers so that $p|a_1, p\nmid a_n$ for a prime p>n/2. Then

(i)
$$\max_{i,j} \frac{a_i}{(a_i, a_j)} \ge n;$$

(ii) if
$$\max_{i,j} \frac{a_i}{(a_i, a_j)} = n$$
 holds, then either $\{a_1, \dots, a_n\} = \{k, 2k, \dots, nk\}$ or $\{a_1, a_2, \dots, a_n\} = \left\{\frac{k}{1}, \frac{k}{2}, \dots, \frac{k}{n}\right\}$ for some integer k, or $n = 4$ and $\{a_1, a_2, a_3, a_4\} = \{2k, 3k, 4k, 6k\}$.

68 M. SZEGEDY

Proof. $a_1/(a_1, a_n) \ge p$ gives the result in the case when p > n. So we may assume $p \le n$. Without loss of generality we may assume also, that $p \mid (a_1, a_2, ..., a_s)$ but $p \nmid a_{s+1} \cdot ... \cdot ... \cdot a_n$. We are done again if for some $1 \le i \le s$, $s+1 \le j \le n$ $a_i/p \nmid a_j$ since then

$$\frac{a_i}{(a_i, a_j)} = p \frac{\frac{a_i}{p}}{\left(\frac{a_i}{p}, a_j\right)} \ge 2p > n.$$

Otherwise we obtain the following divisibility relation, where brackets denote l. c. m.

$$B = [b_1, b_2, ..., b_s] | A = (a_{s+1}, ..., a_n), \text{ where } b_i = a_i/p \ (1 \le i \le s).$$

For $\frac{B}{b_k} = \max_{1 \le i \le s} \frac{B}{b_i}$ we have $\frac{B}{b_k} \ge s$, since $b_i \ne b_j$ whenever $i \ne j$. For $\frac{a_i}{A} = \max_{s+1 \le j \le n} \frac{a_j}{A}$

we have $\frac{a_i}{A} \ge n-s$ since $a_i \ne a_j$ if $i \ne j$.

Now

$$\frac{a_t}{(a_t, a_k)} = \frac{a_t}{(a_t, b_k)} = \frac{a_t}{b_k} = \frac{a_t}{A} \frac{B}{b_k} \frac{A}{B} \ge s(n-s) \frac{A}{B}.$$

We are done if the right hand side is greater than n. Consider the cases when

$$s(n-s)\frac{A}{B} \leq n.$$

- 1. s=1, n-s=n-1, A=B. In this case $\{a_2, a_3, ..., a_{n-1}\} = \{A, 2A, ..., nA\} \setminus \{pA\}, a_1=pB=pA$ so we get a system described in (ii).
- 2. s=n-1, n-s=1, A=B. Now $a_n=A=B$, $\{a_1, \ldots, a_{n-1}\} = \left\{\frac{Bp}{1}, \frac{Bp}{2}, \ldots, \frac{Bp}{n}\right\} \setminus \{B\}$, so we get the other type of system described in (ii).
- 3. n=4, s=n-s=2, A=B will give the third possible system in (ii).

Now our main idea will be presented in

Theorem 1. If the interval $[2n-\sqrt{n}+1, 2n]$ contains a prime p then an arbitrary system $a_1, a_2, ..., a_n$ of distinct positive integers contains two elements a_i and a_j such that $a_i/(a_i, a_j) \ge n$.

Proof. We may assume that $(a_1, a_2, ..., a_n) = 1$. If for some i we have $p|a_i$, we are done by Lemma 1.

We are finished also if $a_i \equiv a_j \pmod{p}$ for some $a_i > a_j$, since then $a_i/(a_i, a_j) \ge a_i((a_i - a_j)/p)^{-1} > p > n$. These facts mean that considering the set $a_1, a_2, \ldots, a_n, -a_1, -a_2, \ldots, -a_n \pmod{p}$ we may assume that each residue class contains at most two of these elements.

If a class contains two elements, they are a_i and $-a_j$ where $i \neq j$. We can divide the congruence $a_i \equiv -a_j(p)$ by (a_i, a_j) $((a_i, p) = 1)$, and we get $a_i' \equiv -a_j'$ (mod p) where $a_i' = a_i/(a_i, a_j)$, $a_j' = a_j/(a_i, a_j)$.

Define a function φ on the congruent pairs $\langle a_i, -a_j \rangle$ by $\varphi \langle a_i, -a_j \rangle = = a_i / (a_i, a_j) = a_i'$. If a_i' or a_j' is greater than or equal to n, we are done. If $a_i' < n$, $a_j' < n$, then from the congruence $a_i' \equiv -a_j' \pmod{p}$ we get $p - n < a_i' < n$, $p - n < a_j' < n$. In this case the image of φ is contained in the set $\{p - n + 1, ..., n - 1\}$, which has 2n - p - 1 elements.

Since the number of congruent pairs is at least 2n-(p-1)=2n-p+1, there are at least two congruent pairs $\langle a_i, a_j \rangle$ and $\langle a_k, a_t \rangle$ such that $\varphi \langle a_i, -a_j \rangle = \varphi \langle a_k, -a_t \rangle = 9$. We have the equalities

$$\frac{a_i}{a_i} = \frac{a_i'}{a_i'} = \frac{\vartheta}{p - \vartheta} \quad \text{and} \quad \frac{a_k}{a_t} = \frac{a_k'}{a_t'} = \frac{\vartheta}{p - \vartheta}.$$

Let us define the positive integers X, Y, X' and Y' by $XY^{-1} = a_i a_i^{-1}$ where (X, Y) = 1 and $X' Y'^{-1} = a_k a_j^{-1}$ where (X', Y') = 1. From the second version of the conjecture we are done if max $(X, X', Y, Y') \ge n$. Otherwise consider the equality

$$\frac{X'}{Y'} = \frac{X}{Y} \frac{\vartheta^2}{(p-\vartheta)^2}, \text{ obtained from } \frac{a_k}{a_j} = \frac{a_k}{a_t} \frac{a_t}{a_i} \frac{a_i}{a_j}.$$

Here $\vartheta^2 = a_i'^2 > (p-n)^2 \ge (n-\sqrt{n+1})^2 > n^2/2$ and

$$n > X' = \frac{X}{\left(X, (p-\vartheta)^2\right)} \frac{\vartheta^2}{\left(\vartheta^2, Y\right)} \quad \text{imply} \quad \frac{X}{\left(X, (p-\vartheta)^2\right)} \frac{1}{\left(\vartheta^2, Y\right)} < \frac{2}{n}$$

so $X|(p-\theta)^2$, $Y|\theta^2$, i.e. $XY'=(p-\theta)^2$, $YX'=\theta^2$. Define λ and μ by $\lambda/\mu=\theta/Y$, $(\lambda, \mu)=1$. Clearly $\lambda|\theta$. But from $Y|\theta^2$ we have that $\theta^2/Y=\theta(Y/\theta)^{-1}=\theta(\mu/\lambda)^{-1}=\theta\lambda/\mu$ is an integer, $(\mu, \lambda)=1$, so $\mu|\theta$. This means that θ can be written in the form $\theta=\theta_1\lambda\mu$, hence min $(\lambda, \mu)<\sqrt{n}$. We also have the inequality, $Y=\theta^2/X' \ge \theta^2/n$. Now we distinguish three cases:

1. Y > 9. In this case, using $\mu > \lambda$, $\lambda < \sqrt{n}$, $9 > n - \sqrt{n} + 1$, and Y < n we obtain

$$\frac{1}{\sqrt{n}} < \frac{\mu - \lambda}{\lambda} = \frac{Y - \vartheta}{\vartheta} < \frac{\sqrt{n} - 1}{n - \sqrt{n}} = \frac{1}{\sqrt{n}},$$

which is a contradiction.

2. $\vartheta > Y$. Now $\lambda > \mu$, $\mu < \sqrt{n}$, $Y > \vartheta^2/n$ and $\vartheta > n - \sqrt{n+1}$, imply

$$\frac{1}{\sqrt{n}} < \frac{\lambda - \mu}{\mu} = \frac{9 - Y}{Y} < \frac{9 - (9^2/n)}{9^2/n} = \frac{n - 9}{9} < \frac{\sqrt{n} - 1}{n - \sqrt{n}} = \frac{1}{\sqrt{n}},$$

which is a contradiction again.

3. We can argue similarly using $p-\theta$ and X instead of θ and Y. So the only case left is $Y=\theta$ and $X=p-\theta$. From these two facts we obtain

$$\frac{a_t}{a_i} = \frac{a_i}{a_i} \frac{a_t}{a_i} = \frac{\vartheta}{p - \vartheta} \frac{X}{Y} = 1,$$

but this is impossible because $a_i \neq a_i$.

70 M. SZEGEDY

The idea of the following extension is due to E. Szemerédi:

Theorem 2. There exists an effectively computable n_0 with the following properties:

(i) If $n \ge n_0$ and $a_1, a_2, ..., a_n$ are distinct natural numbers then $\max_{i,j} \frac{a_i}{(a_i, a_j)} \ge$

≧n.

(ii) If equality holds then the system $\{a_1, a_2, ..., a_n\}$ is either of the type $\{k, 2k, ..., nk\}$ or of the type $\{\frac{k}{1}, \frac{k}{2}, ..., \frac{k}{n}\}$ for some k.

Proof of Theorem 2. If n is large enough then the interval $[2n-n^{1/2+1/7}, 2n-1/2n^{1/2+1/7}]$ contains a prime p by Ingham's theorem. Just as in the proof of Theorem 1, we may assume $p \nmid a_i$ and $a_i \not\equiv a_j \pmod{p}$. Using the notations of Theorem 1, define $\alpha(9) = |\{\langle a_i, -a_i \rangle | \varphi(a_i, -a_i) = 9\}|$. Clearly

$$2n-p+1 \le \text{the number of congruent pairs} = \sum_{\vartheta} \alpha(\vartheta) =$$

= $\sum_{\alpha(\vartheta)=1} 1 + \sum_{\alpha(\vartheta)>1} \alpha(\vartheta) = \Sigma_1 + \Sigma_2$.

We shall give an upper bound for Σ_2 . Clearly

$$\Sigma_2 \leq (\max_{\vartheta} \alpha(\vartheta)) \sum_{\alpha(\vartheta)>1} 1 = AB.$$

From $Y|\vartheta^2$, $X|(p-\vartheta)^2$ we get that $A \le d(\vartheta^2)d((p-\vartheta)^2) = O(n^\varepsilon)$ for arbitrary $\varepsilon > 0$. To give an upper bound for B we have to enumerate all values of ϑ for which either Y may be different from ϑ or X may be different from $p-\vartheta$. If Y is different from ϑ , ϑ can be written in the form $\vartheta = \vartheta_1 \lambda \mu$ where $Y = \vartheta_1 \mu^2 > \vartheta^2/n$. Similarly to Cases 1 and 2 in the proof of Theorem 1 we obtain now

$$\left|\frac{1}{\lambda} \leq \left|\frac{\lambda - \mu}{\lambda}\right| = \left|\frac{9 - Y}{9}\right| \leq \frac{2}{n^{1/2 - 1/7}},$$

hence $\lambda \ge n^{1/2-1/7}/2$.

Since both Y and 9 are in the interval $[n-2n^{1/2+1/7}, n]$, and $Y/\vartheta = \mu/\lambda$ we obtain $\mu = \lambda Y/\vartheta \ge n^{1/2-1/7}/4$. But then $\vartheta_1 = \vartheta(\lambda\mu)^{-1}$ implies

$$\vartheta_1 < 8n^{2/7}.$$

Define $K=\sqrt{n/\vartheta_1}-\mu$, $L=\sqrt{n/\vartheta_1}-\lambda$. From $n-n^{1/2+1/7} \le \vartheta = \vartheta_1(\sqrt{n/\vartheta_1}-K) \times (\sqrt{n/\vartheta_1}-L) = n-\sqrt{n\vartheta_1}(K+L)+KL\vartheta_1$ we get that $K+L=O(n^{1/7})$. From $n-O(n^{1/2+1/7}) < Y = \vartheta_1(\sqrt{n/\vartheta_1}-K)(\sqrt{n/\vartheta_1}-K) = n-\sqrt{n\vartheta_1}(2K)+K^2\vartheta_1$ we get that $2K=O(n^{1/7})$. Since ϑ is uniquely determined by ϑ_1 , K+L and 2K we get that the number of possible choices of ϑ is at most $O(n^{2/7})O(n^{1/7})O(n^{1/7}) = O(n^{4/7})$. We have the same result for the number of possible values of $p-\vartheta$, as well. Thus we have an upper bound $\Sigma_2 \le AB = O(n^{\epsilon}n^{4/7})$ for arbitrary ϵ and hence

$$\Sigma_1 \ge 2n - p + 1 - \Sigma_2 \ge 2n - p + 1 - O(n^{4/7 + 1/15}).$$

Since we know (see [3]), that in the interval $[n-1/2n^{1/2+1/7}, n] \subseteq [p-n, n]$ the number of primes is $\ge cn^{1/2+1/7}/\log n$ for some positive constant c, we see that the set $\{9|p-n\le 9\le n, 9 \text{ is not a prime}\}$ has at most $2n-p+1-cn^{1/2+1/7}/\log n$ elements.

Since Σ_1 is greater than this value (for $n > n_0$) we obtain, that there is a congruent pair $\langle a_i, -a_j \rangle$ so that $\varphi \langle a_i, -a_j \rangle$ is a prime $\pi > p - n > n/2$ and considering $a_i / (a_i, a_j) = \pi$ we are done by the Lemma. (To obtain (ii) we made use also of the fact, that n can be replaced by n+1 in some of the arguments taken from the proof of Theorem 1.)

Acknowledgements. The author would like to express his thanks to E. Szemerédi for contributing a key idea to the proof of Theorem 2.

References

- [1] P. Erdős and R. L. Graham, Old and New Problems and Results in Combinatorial Number Theory, Genève, 1980.
- [2] R. L. Graham, Unsolved problem 5749, Amer. Math. Monthly, 77 (1970), 775.
- [3] D. R. HEAT-BROWN and H. IWANIEC, On the difference between consecutive primes, *Invent. Math.* 55 (1979), 49—69.

M. Szegedy

Department of Algebra and Number Theory Institute of Mathematics, L. Eōtvös University Budapest, 1088, Hungary

Current address:

Department of Computer Science University of Chicago 1100 E 58th St. Chicago, IL 60637, U.S.A.